Modulation of drug-stimulated ATPase activity of human MDR1/P-glycoprotein by cholesterol.

نویسندگان

  • Yasuhisa Kimura
  • Noriyuki Kioka
  • Hiroaki Kato
  • Michinori Matsuo
  • Kazumitsu Ueda
چکیده

MDR1 (multidrug resistance 1)/P-glycoprotein is an ATP-driven transporter which excretes a wide variety of structurally unrelated hydrophobic compounds from cells. It is suggested that drugs bind to MDR1 directly from the lipid bilayer and that cholesterol in the bilayer also interacts with MDR1. However, the effects of cholesterol on drug-MDR1 interactions are still unclear. To examine these effects, human MDR1 was expressed in insect cells and purified. The purified MDR1 protein was reconstituted in proteoliposomes containing various concentrations of cholesterol and enzymatic parameters of drug-stimulated ATPase were compared. Cholesterol directly binds to purified MDR1 in a detergent soluble form and the effects of cholesterol on drug-stimulated ATPase activity differ from one drug to another. The effects of cholesterol on K(m) values of drug-stimulated ATPase activity were strongly correlated with the molecular mass of that drug. Cholesterol increases the binding affinity of small drugs (molecular mass <500 Da), but does not affect that of drugs with a molecular mass of between 800 and 900 Da, and suppresses that of valinomycin (molecular mass >1000 Da). V(max) values for rhodamine B and paclitaxel are also increased by cholesterol, suggesting that cholesterol affects turnover as well as drug binding. Paclitaxel-stimulated ATPase activity of MDR1 is enhanced in the presence of stigmasterol, sitosterol and campesterol, as well as cholesterol, but not ergosterol. These results suggest that the drug-binding site of MDR1 may best fit drugs with a molecular mass of between 800 and 900 Da, and that cholesterol may support the recognition of smaller drugs by adjusting the drug-binding site and play an important role in the function of MDR1.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Expression of the human multidrug resistance cDNA in insect cells generates a high activity drug-stimulated membrane ATPase.

Drug-resistant tumor cells actively extrude a variety of chemotherapeutic agents by the action of the multi-drug resistance (MDR1) gene product, the plasma membrane P-glycoprotein. In this report we show that the expression of the human MDR1 gene in cultured Sf9 insect cells via a baculovirus vector generates a high activity vanadate-sensitive membrane ATPase. This ATPase is markedly stimulated...

متن کامل

Drug-stimulated nucleotide trapping in the human multidrug transporter MDR1. Cooperation of the nucleotide binding domains.

The human multidrug transporter (MDR1 or P-glycoprotein) is an ATP-dependent cellular drug extrusion pump, and its function involves a drug-stimulated, vanadate-inhibited ATPase activity. In the presence of vanadate and MgATP, a nucleotide (ADP) is trapped in MDR1, which alters the drug binding properties of the protein. Here, we demonstrate that the rate of vanadate-dependent nucleotide trappi...

متن کامل

Modulation of cellular cholesterol alters P-glycoprotein activity in multidrug-resistant cells.

The drug transporter P-glycoprotein (ABCB1) plays an important role in drug distribution and elimination, and when overexpressed it may confer multidrug resistance (MDR). P-glycoprotein is localized in the plasma membrane, especially within rafts and caveolae, characterized as detergent-resistant membranes (DRMs). This study investigated the effect of cholesterol depletion and repletion as well...

متن کامل

Mechanisms of P-Glycoprotein Modulation by Semen Strychni Combined with Radix Paeoniae Alba

Semen Strychni has been extensively used as a Chinese herb, but its therapeutic window is narrowed by the strong toxicity of the compound, which limits its effectiveness. Radix Paeoniae Alba has been reported to reduce the toxic effects and increase the therapeutic effects of Semen Strychni, but the underlying mechanism remains unknown. This research aimed to explore the mechanism through which...

متن کامل

بررسی فراوانی پلی مورفیسم C3435T ژن MDR1 در بیماران ایرانی مبتلا به کولیت اولسرو

Background: P-glycoprotein, the product of MDR1 (multi drug resistance) gene, is a trans membrane efflux pump, transferring drugs and toxins from intracellular to extracellular domains. It acts as a protective barrier to keep toxins out of the body by excreting them into the bile, urine and intestinal lumen. In the human gastrointestinal tract, P-glycoprotein is found in high concentrations on ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Biochemical journal

دوره 401 2  شماره 

صفحات  -

تاریخ انتشار 2007